
8th Central and Eastern European
Software Engineering Conference
in Russia - CEE-SECR 2012
November 1 - 2, Moscow

Miloslav Sredkov

Jsonya/dm: A Univocal JSON
Interpretation

Faculty of Mathematics and
Informatics, Sofia University

This work was partially supported by the Bulgarian National Science Research Fund through contract 02-
102/2009.

Introduction (1)

 JSON grows more and more popular:
 Intended to be “the intersection of all modern programming

languages”
 “The thing that everybody can agree on, so it's really easy to

pass data back and forth” [1]
 Still defined only as syntax

 Most developers assume semantics biased towards their
tools

 Potential interpretation clashes

Introduction (2)

 Our idea:
 Interoperable interpretation should be designed based on a

large set of environments
 Our contributions:

 Overview of the currently used JSON data models
 Analysis of the ambiguous features of JSON
 The unambiguous data model Jsonya/dm
 Analysis of 63 JSON libraries for 10 programming languages

II. EXISTING APPROACHES

JavaScript Interpretation

 JSON is a subset of ECMAScript [2], so why shouldn't its
interpretation also be?

 IEEE 754 [3] 64-bit floats:
 Loss of precision when converting to and from text
 What about +Inf or NaN?
 Some environments may lack 64-bit floats

 Are object members ordered?
 ECMAScript Standard: No
 Most browsers: Yes

The XML Metamodel

 Some authors consider JSON as “An alternative physical
model for XML metamodels” [4]
 Tools converting between XML and JSON are present
 XSLT, XQuery, XForms, etc. can be used

 However,
 XML has multiple different metamodels
 JSON and XML are too different — conversion is not trivial
 Inherited XML problems prevent JSON from being “The Fat-

Free Alternative to XML”

The YAML Metamodel

 YAML is stated as a “natural superset of JSON” [5]
 Many YAML technologies can be applied to JSON
 Its specification (unlike XML's) explicitly defines an

information model
 However,

 YAML is less popular and less tools are available
 Its information model is loosely defined, e.g: “The supported

range and accuracy depends on the implementation, though
32 bit IEEE floats should be safe.” [5:74]

Other Popular Metamodels

 Work at the syntax level only
 Pros: developers can pick the most suitable interpretation
 Cons: less convenient, less interoperable

 Map to the types of the host programming language
 Pros: better performance, more convenient
 Cons: less interoperable, e.g. not distinguishing empty

arrays from null
 A set of custom data types

 Pros: flexibility
 Cons: likely to be influenced by the host language

III. ANALYSIS

Example

{

 "name": "Evgeni V. Plushenko",

 "birth_date": {"year": 1982, "month": 11,

 "day": 3},

 "best_scores": [261.23, 91.30, 176.52],

 "status": {

 "verified": true,

 "locked": false,

 "external_record": null

}

}

Could I have written day,
month, year instead?

Could I have written 3.0 instead?

Could I have omitted it?

Is the trailing zero important?

Objects

 Some ambiguities:
 Ordered fields? (RFC 4627: No, Many libraries: Yes)
 Unique names? (RFC 4627: Probably, Most libraries: Yes)
 What characters are allowed in field names and how are

they compared?
 Common representations:

 Plain lists / arrays: O(N), ordered
 Sorted sequences (incl. balanced trees): O(log N), unordered
 Hash tables: O(1), unordered
 Linked hash tables: O(1), ordered

Numbers

 Some ambiguities:
 -0 == 0?
 130 == 130.0?
 130.0 == 130.00? 130 == 13e1?
 Can we accurately define 0.123456789012345678901?

 Different tools answer these questions differently
 The intersection principle cannot be applied here
 The essential information must be defined explicitly

Strings and Other Ambiguities

 "K" == "\u004b"?
 Can strings contain nil characters?
 Do strings have a maximal length?
 123 == "123"?
 Are false, null, 0, "", {}, [] distinct?

Design Considerations

 Explicitness: We must unambiguously define which JSON
details are essential and which are not

 Determinism: The same JSON text should denote the
exact same information regardless of the environment
 Any loss of information/precision must be controllable

 Detail concealment: The metamodel structure should not
expose any inessential information

 Minimalism. Only information which is useful to a wide
enough set of applications should be included

IV. JSONYA/DM

The Metamodel

 Each element has a (distinguishable) kind: string, decimal,
object, array, true, false, or null

 Strings: finite sequences of code points U+0000–U+D7FF
and U+E000–U+10FFFF

 Decimals: rational numbers with denominators 2N5M

 Objects: unordered associative arrays whose keys are
distinct strings

 Arrays: finite sequences of zero or more elements
 True, false, and null: no additional information except

their kinds

Domain Enumerability

 To formally define the information set, a bijective
function encode : N → the set of all elements

 Two JSON texts represent the same element iff they
correspond to the same number

 The mapping is based on the Cantor's pair function [6]
 Can also be used to generate test data and for other

applications

Implementatability (1)

 The information model is designed to follow the core
JSON ideas

 For strings and numbers the intersection principle could
not be applied
 The model targets to facilitate determinism instead

 For some environments this model may be too
sophisticated
 Particular limitations can be negotiated explicitly
 Relayed information must not be inadvertently distorted

Implementatability (2)

The essential defines object model selectors, e.g.:
public interface Element {

String kind();
Set<String> keys();
Element field(String name);
Element item(int index);
int size();
String asString();
BigDecimal asDecimal();

}

Limitations

 The following questions are not answered:
 How should the unorderness of the keys() be achieved?
 What if a non-existing field or item is requested?
 How to conceal details available in the used types?

 E.g.: for Java's BigDecimal 12.0 and 12.00 are different
 How can the “inessential” information be handled in cases

when such is needed?
 Already established technologies may be incompatible

with the introduced metamodel

V. EVALUATION

Methodology

 Select the 10 most discussed programming languages
according to LangPop.com

 For each of them pick all libraries listed at json.org
 Identify the data model of each library and record its

properties, including:
 Are objects ordered or unordered?
 What parts of the string or number representation is

exposed?
 What is the supported set of numbers?
 Are false, null, empty objects and empty arrays

distinguishable?

Results

 63 libraries analysed (C++: 6, C: 9, Java: 18, Python: 4,
Haskell: 2, JavaScript: 2, Ruby: 3, C#: 10, PHP: 6, Lisp: 3)
 More than 11 different integer ranges
 Almost as much ways to treat non-integers
 Different handling of strings, empty lists/arrays, nulls
 Many libraries behaved differently based on platform and

runtime version
 More than half of the libraries treated objects as ordered

 What data-interchange are we talking about then?

Interpretation of Results

 Number handling discrepancy justifies the radical
approach of Jsonya/dm.

 Some environments do not fully support Unicode, but
there is no suitable substitute

 Unordered objects are more interoperable
 On the negative side:

 Most libraries could not handle arbitrarily large numbers,
 Decimal numbers may require additional effort
 Most libraries used mutable object models, we do not

prescribe to efficiently design such

Threats to Validity

 The accuracy of the evaluation may affected by:
 All libraries were considered equal, although they vary

significantly in features, quality and popularity
 Some of the libraries may have not been analysed correctly,

e.g. used in an incorrect way
 Some of the libraries may have already changed

Conclusion

 We presented Jsonya/dm — an unambiguous data model
for JSON

 Jsonya/dm is aligned with established tendencies and
attacks the common causes of discrepancy

 The interfaces of the adhering object models can be
simple

 We look forward to integration with some of the already
developed JSON tools

 Future work: We need to devise efficient representations
for the needs of the various environments

Thank You!

Questions?

References

[1] D. Crockford, “The JSON saga,” YUI Theater video, 2009,

[2] ECMA, ECMA-262: ECMAScript Language Specification. 5.1
edn., 2011

[3] IEEE Task P754, IEEE 754-2008, Standard for Floating-Point
Arithmetic, 2008

[4] E. Wilde and R.J. Glushko, “Document design matters,”
Commun. ACM 51 (2008) 43–49

[5] O. Ben-Kiki, C. Evans and I. döt Net, YAML ain’t markup
language (YAML™) version 1.2, 3rd edition, patched at 2009-10-
01. http://yaml.org/spec/1.2/spec.pdf, 2009

[6] G. Cantor, “Ein Beitrag zur Mannigfaltigkeitslehre,” Journal
für die reine und angewandte Mathematik 84, 1878, pp. 242–
258

